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Introduction

During the last several years, the understanding of the
phenomenon of electrical breakdown in vacuum has been greatly advanced.
It is now generally recognized that electrical breakdown between
electrodes in a clean environment is initiated by field emission
currents drawn from submicroscopic projections on the cathode surface,1
the electric field at these projections being greatly enhanced from
that of the average electric field which would exist in the absence of
such projections, Although field emission processes were recognized
early as possible mechanisms for the initiation of electrical break-
down,2 quantitative identification was not firmly established until
the investigations of Dyke,3 and then only for the particular case of
the point-to-plane geometry of the Mx'fller4 field emission microscope.
For this geometry Dyke and his co-workers clearly demonstrated that
electrical breakdown was initiated by field emission currents when the
current density from the point tungsten cathode exceeded a critical
value of 108 a/cmz, The electric field strengths necessary to draw
these current densities are of the order of 5—7X107 v/cm,5

Despite their definitive quality, Dyke's results did not seem
consistent with results obtained with other electrode geometries. 1In
particular, for broad area parallel electrodes the experimentally
obtained electric field strengths were of the order of 105 v/cm,1 two
orders of magnitude lower than those found by Dyke. In addition, the
electric field strengths at breakdown depended on gap spacing,6 a fact

at variance to any conceived mechanism involving field emission. With




these apparent discrepancies to a field emission theory of breakdown
a plethora of other theories were advanced both before and after Dyke's
startling results.1

Reporting in 1962, Alpert and Lee7 analyzed the experimental
results of Boyle, Kisliuk and Germer,8 who used crossed tungsten wires
at short gap spacings, and the results of Dyke and showed a previously
unrecognized agreement between these two investigations: electrical
breakdown occurred when the electrical field measured at the field
emission sites exceeded the critical value of 6.5)(107 v/cm to within a
small experimental error., These findings were greatly extended with
the experimental work of Alpert, Lee, Lyman and Tomaschke.1 Using
broad area electrodes they verified the critical field criterion for
gap spacings up to 6 mm and voltages up to 250 kv. A similar analysis
when applied to the results of Pivovar and Gordienko9 and Ahern2 and
Chambers10 showed substantial agreement for a constant field criterion
for electrical breakdown.

An essential feature of this breakdown criterion is the
existence of submicroscopic projections on the surface of the cathode.
It has long been recognized that such projections can provide field
enhancements of up to several thousand times the field in the absence
of the projections.11 Indirect experimental evidence for the existence
of such points was provided by Boyle, Kisliuk and Germer.8 They ob-
served that the field enhancements necessary to bring their field emis-
sion current results into agreement with the Fowler-Nordheim theory

were gap dependent. At small gaps approaching a few wave lengths of



light they observed that the field enhancement approached one. From
this gap dependence they inferred the existence of points rather than
the alternative explanation of exceedingly low work functions.12
Tomaschke,13 using an electron microscope and suitable small but
nevertheless broad area tungsten electrodes was able to directly
observe the existence of projections on the electrode surface, identify
the prebreakdown emission as field emission, and establish that the
critical field criterion was applicable. Independently, Little and
Whitney14 for a variety of materials observed in EEEE that the pre-
breakdown emission occurred from submicroscopic projections averaging
two microns in length. Both experimenters verified that every elec-
trical breakdown resulted in the removal of one or more emission sites.

Subsequently other investigators identified the existence
of projections on the surface of the cathode. 1In particular, Brodie
and Weissman15 using a cylindrical field emission microscope were able
to infer the existence of projections by an analysis of the shapes of
the field emission patterns. Pivovar and Gordienko9 by direct observa-
tion, apparently with an electron microscope, were able to demonstrate
the existence of brojections roughly two microns long on the molybdenum
cathodes of their electrodes. The number of projections on broad area
electrodes has been observed to be of the order of-50 to 100 per square
centimeter by the aforementioned investigators and by Singer and
Doolittle16 using pin-hole x-ray camera equipment.

At present the circumstances of production of projections

on the surface of the electrodes has not been fully investigated.



However, certain processes which result in the production of projec-
tions have been isolated. Without question the machining and handling
of the electrodes before insertion into the vacuum system accounts for
many projections. Additionally, Tomaschke13 has noted several methods
for producing projections prior to and during electrical breakdown.
Brodie17 has witnessed apparent whisker growth by the deposition of
impurity materials from an auxiliary thermionic emitter. Pivovar and
Gordienko9 have noted a particularly unusual case of the production of
whiskers in an electrical breakdown experiment. During the process of
thoroughly outgassing their molybdenum electrodes at 2000°C, they sub-
sequently found that a profusion of very sharp projections had been
formed. An analysis of their data indicates that these whiskers en-
hanced the electric field by as much as 100 to 4000 times. It seems
reasonable that these whiskers grew in the interval immediately after
outgassing when the thermal stresses were large, and the substrate warm.
Thus the constant field criterion for electrical breakdown
is firmly established. It seems apparent that electrical breakdown for
clean tungsten electrodes in an ultrahigh vacuum environment is a field-
emission-initiated phenomenon where the emission occurs from submicro-
scopic projections on the surface of the cathode. At breakdown the
locally enhanced field at these projections is a constant to within
experimental error as determined from the breakdown voltage and an
analysis of the prebreakdown voltage-current relationship. This crit-
ical value of electric field is 6.5X107 v/cm for tungsten independent

of the total voltage between the electrodes or of the macrogeometry of



the electrode surfaces. The results of four independent investigators
are summarized in Figure 1. These results demonstrate that when prop-
erly analyzed electrical breakdown occurs at constant electric field

for the nearly five orders of magnitude of electrode spacing investigated.

Transition Mechanism: Cathodic or Anodic?

The criterion that breakdown will ensue whenever the electric
field at the surface of a cathode projection exceeds a critical value
seems of technological interest rather than a fundamental result in the
sense that it does not directly identify the initiatory event at which
the transition to breakdown current occurs, It was recognized that
this criterion could not of itself be used to exclude the anode from
playing a role in the initiatory event.7 However, the agreement in
the experimental results summarized in Figure 1 is in itself a persua-
sive argument that the cathode is the initiatory surface. These re-
sults clearly indicate that the breakdown field is independent of all
geometrical considerations., Geometries in which the role of the anode
is clearly excluded, as in the point-to-plane investigations of Dyke,3
have the same breakdown field as the broad-area, short-gap electrode
investigations in which the role of the anode cannot be obviously dis-
missed. From these considerations alone it seems plausible to assume
that the cathode surface is indeed the initiatory surface.

There is additional indirect evidence which supports the

contention that the cathode surface is the initiatory surface.

1
Tomaschke,13 and independently Little and Whitney, 4 as well as
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Brodie,17 find that, coincident with electrical breakdown one or more
emission sites is always destroyed. The conclusion that the cathode
surface is the initiatory surface is also consistent with the experi-
mental findings of Pivovar and Gordienko.9 In their experiments they
found that imposing a transverse magnetic field sufficiently strong to
prevent the field emission current from striking the anode surface did
not materially improve the voltage-holding capabilities of the elec-
trodes. Finally, in a recent paper by Brodie,17 it is shown that for
nickel the cathode marks which result from the breakdown process are
nearly identical, independent of electrode geometry. The cathode marks
found on a nickel wire cathode of a cylindrical field emission micro-
scope were indistinguishable from the cathode marks found on a nickel
broad area cathode.

But even for larger gap spacings up to 6 mm, where field
emission techniques have been used for broad area electrodes, the
experimental results tend to support a field emission mechanism. For
such gaps, it is found that the voltage-holding capability increases
and the background current decreases when a gas is introduced18 into
the gap spacing at a pressure of the order of 10_4 Torr. The only
plausible explanation thus far presented for this effect is associated
with the selective destruction of cathode projections by ion bombard-
ment. Similarly, the experimental results of Murray19 using hot glass
cathodes and Rohrbach20 and Jeydnck21 using coated cathodes (coated
with high dielectrics to reduce the cathode fields) to obtain higher

breakdown voltages are consistent with a cathode-initiating event.



We are not aware of experimental results which support the
contention that the anode is involved in the breakdown transition to
high currents. No process has been postulated which can generate ions
in sufficient numbers to directly increase the interelectrode current
by the orders of magnitude necessary in the transition.zz For some
experiments, transition time consideration would seem to prevent the
anode from even augmenting the field emission current through any known
space charge mechanism.23 Particularly the calculations of Kisliuk24
indicate that the increase in field emission current due to the close
approach of single ions to the cathode surface is especially small for large
gaps. Mechanisms involving the vaporization of the anode material25
by field emission currents followed by gas breakdown in the vapor do
not seem plausible. Experiments in electron beam welding26 indicate
that electron beams may have penetration depths orders of magnitude
longer than those predicted by Waddington's law27 for single electrons.
These experimental results bring into serious question the validity of
the calculations of the amount of gas vapor evaporated from the anode.
Additionally, no secondary effects of this gas cloud, such as the
condensation of the vapor on other surfaces, have been noted in the
literature,.

In summary, there seems to be strong evidence that the
cathode is the initiatory surface, and conversely, little evidence
that would demand or even allow the anode to take part in the

transition to breakdown.



A Review of Cathode Transition Mechanhisms

From their results in the point-to-plane geometry, Dolan,
Dyke and Trolan28 calculated that the field emission current densities
just prior to breakdown were sufficient to melt the cathode projection.
Dyke,3 et al., proposed a regeneration scheme whereby the cathode cur-
rent is greatly increased through the creation of positive ions by
electron impact processes in the metallic vapor evaporated at these
elevated temperatures., It does not seem reasonable that this process
could be a general process applying to all materials, Not only is
there no discontinuity in the vapor pressure at the melting point, but
there are orders of magnitude difference in the vapor pressures of
common materials at their melting pahmsgg Furthermore, the experi-
ments of Gorkov30 in which the field emission processes were investi-
gated at high pressures, of the order of 10_4 Torr, gave no evidence
that the negative space charge found in field emission microscope
experiments could be neutralized.

Vibrans31 has analyzed the temperature-field emission process
itself and has shown it to be unstable. He points out that the field
emission current increases the temperature at the surface of the pro-
jection through ohmic heating, and this increase in the temperature
increases the current through thermal emission processes. The process
so envisioned is unstable, leading to a rapid buildup of the current.
However, Vibrans did not take into consideration cooling from the
Nottingham effect32 which will tend to stabilize the temperature of

the surface to a value dependent solely on the field. Experiment also



10

argues against the phenomenon since field emission has been shown to

be stable and reproducible up to the point of breakdown. At these

high fields the current does not depend strongly on temperature. How-
ever, there may be cases in which the Vibrans model can be shown to
dominate over the cooling effects of the Nottingham process. An example
is the case of long whiskers in which sufficient ohmic heating can

occur at low fields to overcome the Nottingham effect.

A Suggested Transition Mechanism

An alternative mechanism for the initiatory event has been
suggested by Alpert, Lee, Lyman and Tomaschke1 in which the field
emission currents heat the projection up to a temperature, perhaps the
melting temperature, where the mechanical strength of the projection
fails, They postulate that the projection then becomes strongly un-
stable and the electrode material begins to move into the gap under
the action of the strong electrical forces. This process could either
greatly enhance the electric field at the surface or increase the
emitting area, or both, resulting in a large increase in the field
currents. It is suggested that this process can lead to a situation
closely paralleling the exploding wire experiments of Tucker.33 In
these experiments current densities comparable to those obtained in
field emission experiments melt and vaporize the wire in a nanosecond's
time, If in an analogous manner the projection melts and vaporizes,
then it is seen that conditions are established that are ideally suited

for the transition to a low-voltage, high-current arc.
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This mechanism is consistent with the experimental breakdown
results obtained from field emission microscope studies with tungsten
cathodes. Mechanical failure at the melting point is a reasonable
assumption for tungsten, since breakdown fields for tungsten are sub-
stantially less than the field strengths of 6X108 v/cm necessary for

the rupture of the point anodes of field-ion microscopes.34

The Calculation of the Critical Field for Tungsten

It remains to reconcile the experimental fact that breakdown
occurs at a more or less constant electrical field with the proposed
melting mechanism for electrical breakdown. At first glance, it would
seem to follow that if breakdown occurs at constant field then all of
the projections on the cathode surface should look more or less alike;
a conclusion directly refuted by our experiments. To investigate this
seemingly contradictory conclusion we have analyzed this proposed
mechanism for electrical breakdown by conducting a computer analysis
to determine the field necessary to bring idealized projection shapes
to a critical temperature. It is shown that for a vast variety of
emitter sizes and shapes, roughly corresponding to those experimentally
observed, electrical breakdown will occur by the proposed mechanism
for electric fields in a range within the experimental error associated
with the experiments summarized in Figure 1,

In the course of carrying out these calculations, several
more accurate approximations for the field-temperature dependent elec-

tron emission were found in the literature. Numerical calculations
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based on these new approximations have not previously been made. Supple-
mentary calculations representing small corrections to field-temperature
emission and the Nottingham critical temperature are also given.

It is recognized that the melting of the projection is
principally due to the field emission currents. Before we calculate
the critical field necessary to melt the projections, we will briefly

review both the field emission theory and the Nottingham effect.

A. Combined Temperature and Field Dependent Emission.

Field emission was recognized by Fowler and Nordheim35 as a
quantum mechanical problem in which the electrons of the conduction
band are pictured as tunnelling through the field reduced potential
barrier of the metal as can be seen in Figure 2., Fowler and Nordheim,
using the energy distribution of the electrons within the conduction
band as a function of temperature found by Sommerfield, calculated the
rate of arrival of electrons at the boundary. Upon calculating the
transparency of the boundary as a function of energy, they found that
by taking the low temperature limit they could obtain in closed form
the field-dependent current density. Fowler and Nordheim combined as
a final result the following expression for the dependence of current

3
density J on electric field: 6

J = [1.54x1o'6E2/<pt2(y)]

-exp—6.83X107(@3/2/E(y)) €8

where E is the electric field at the cathode surface, ¢ is the work

function of the cathode material, and v and t are slowly varying
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functions of the variable y = (s-79X10_4Eé)/¢, which are almost
constant over the useful range of measurements of the current density.

Temperature corrections to field emission have been made by
Dyke,37 Brodie,38 and Gorkov, Elinson and Yakovleva.39 However, the
validity of these corrections is in some question at temperatures and
fields where significant electron populations exist at energy levels
near and above the height of the field reduced potential barrier. At
these energy levels their approximations for the transparency of the
barrier give unity probability for emission which in essence treats
the electron as a classical particle.

Murphy and Good,40 using a more general form for the trans-
parency of the barrier as a function of electron energy, found by
Kemble,41 have derived expressions for the combined temperature-field
emission more accurate at all temperatures and fields. In particular,
Murphy and Good have shown that their expressions give as limiting
cases field emission and thermal emission.

It is not the intention herein to give complete derivations
of the particular results since the reader for himself may consult the
references for this, but rather to give those results necessary to
calculate the combined temperature-field emission. The energy distri-
bution of the electrons in the metal is such that N(w) electrons per
second in the energy range dw arrive at the boundary of the metal.

Fowler and Nordheim formulate N(w) as follows:

4Tk T

3
h

N(W) =

log (1 + exp - %%9 )



where is the mass of the electron,
is the Boltzmann constant,

is the temperature in oK,

5 42 ® 8

is Planck's constant,

¢ is the work function.
Now the probability D(w) that an electron penetrates the field-

reduced barrier a and escapes as formulated by Murphy and Good is:

1

D(w) =

éZmez
l+exp hoF v(y)

where h is h/wh,
F is the electric field,

v(y) is a function of the complete Elliptic Integrals.

y = EF/|W|

for 0 < y < 1.0.

v(y) = (1+y)%E[(l—y)%/(1+y)%] - yK[(l—y)%/(1+y)%]

for y > 1.0.

v(y) = -(y/Z)% - 2E[(y—l)%/(2y)%] + (y+1)K[(y—1)%/(2y)%]
where K(k) and E(k) are the complete Elliptic Integrals of the first
and second kind, respectively.

The current density for a particular temperature and field
is found by numerically integrating the product of N(w) and D(w) over
the energy range within the metal:

o

j=e I D{(w) N(w)dw
—e
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where

j is the current density,

e is the electronic charge,

w is the energy of the incident electron,
D(w) is the transmission coefficient,

N(w) is the flux of electrons incident to the surface.

The results of the calculations are given in Figure 3,
where the common logarithm of the current density is given as a

function of both the electric field and the temperature.

B. The Nottingham Effect

One of the fundamental assumptions of the field emission
calculation is that the electron distribution within the metal is
the steady-state distribution found by using Fermi-Dirac statistics.
This is a reasonable assumption since even at the highest current
densities found experimentally only a small percentage of the elec-
trons in the metal which strike the barrier also penetrate it.
Nottingham32 recognized that when the emitted electrons are replaced
in the distribution within the metal an energy exchange process de-
velops between the crystal lattice and the electron distribution.
Postulating that this electron must come from the Fermi level,
Nottingham predicted that the emission current may either heat or cool

the surface depending on whether the majority of the emitted electrons
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come from below the Fermi level or from above it., Thus if the emitted
electron comes from below the Fermi level, the electron from the Fermi
level used to fill this vacancy gives up energy to the lattice leading
to Nottingham heating. Alternatively when the electron is emitted from
above the Fermi level, the lattice must supply the energy necessary to
excite an electron from the Fermi level to replace the emitted electron,
thus leading to Nottingham cooling of the surface.

These effects can clearly be seen in the interpretation of
the normalized current densities in Figures 4 and 5. Here the emitted
electron energy distributions are plotted. They are obtained by
evaluating at a given temperature and field the product of the trans-
parency of the barrier D(w) and the rate of arrival N(w) used in the
last section to determine the current density. Although the actual
current densities differ by orders of magnitude it is only the symmetry
with respect to the Fermi level which will determine whether the
Nottingham effect will be heating or cooling. The magnitude of the
effect nevertheless will depend on the magnitude of the current density.

Consider Figure 4 in which three different electron distri-
butions for the same temperature but differing fields are shown. It
will be seen that as the field is increased the number of electrons
penetrating the barrier below the Fermi level is increased. Alterna-
tively, as can be seen in Figure 5, increasing the temperature increases
the number of electrons in the energy levels above the Fermi level,

thus shifting the distribution toward higher energy levels.
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It was recognized by I, Brodie38 that if the other sources
of heating and cooling could be ignored, the Nottingham effect would
stabilize the temperature of the emitting surface to a temperature
which was solely dependent on the electric field. At this temperature,
called the critical temperature by Levine,42 the energy which the
laftice supplied for the electrons emitted above the Fermi level is
exactly equal to the energy received by the lattice for electrons
emitted below the Fermi level. Thus if the temperature of the surface
is below the critical temperature more electrons are emitted below the
Fermi level than above, giving rise to Nottingham heating, which will
tend to bring the temperature of the surface to the critical tempera-
ture. Increasing the electric field increases the number of electrons
emitted below the Fermi level thus demanding that the inversion
temperature increase.

The Nottingham effect can be formulated as follows:

o E
NT = e I I (w+¢)D (w) N(E,w) dEdw

—~0 ~
where the functions D(w) and N(w) have the same significance as in
the current density calculation. However, account must be taken of
the fact that the original electron distributions found by Fowler and
Nordheim were distributions of normal energy of the electron with
respect to the barrier. Young43 has considered this and has reformu-
lated the supply function as a function of both total energy and of

the normal energy component of the total energy as:
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temperature distribution must be fitted. The assumption that the
Nottingham effect is solely a surface effect demands that the transfer
of energy to and from the metal lattice occur very near the surface.
There is no experimental justification for this assumption. Indeed the
energy transfer may occur deep within the metal by a multiple step
transition process., If this were the situation then the effects of
the Nottingham process on the temperature of the surface and on the
temperature distribution in the projection would be greatly exaggerated.
However, in the absence of direct experimental evidence in regard to
this point we make the assumption that the process occurs at the surface
allowing us to include the Nottingham effect as a boundary condition
rather than as a more mathematically cumbersome volume heating or
cooling effect.

It should be noted that calculation of the critical tem-
perature is not dependent on where the energy transfer takes place
but is only a function of the field at the surface and the electron.

44
The steady state heat conduction equation:
2
KV'T = -g(x,y,2)

where g(x,y,z) is the source function.
For radial symmetry in a spherical coordinate system and for
the case of resistive heating the conduction equation reduces to a

second order differential equation as follows:

1 d ,2dT p 2
;55(1' @ ="xd @
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where P is the resistivity of the medium and K, the thermal conduc-
tivity. If we let jo be the field emission current density at the
emission surface and r0 the location of the emission surface then the

differential equation assumes the final form:
4
r

2 dT p .2 o)
K Jo (r ) .

f% é% (r =) =-

It should be noted that the equation may be solved
analytically for the case in which the resistivity and the thermal
conduction are not functions of the temperature. However, in the
range of interest here the resistivity varies by a factor of nearly
twenty and the equation must be solved by numerical means.

The numerical solution is found by stipulating the tempera-
ture and the field at the emission site. The field and the tempera-
ture are sufficient to specify the Nottingham effect, and it is used
to determine the initial value of the dT/dr since KdT/dr is the energy
transported across the emission site by the Nottingham effect. Thus
the field and the temperature at the emission site are used for ad-
justable parameters in the calculation to find appropriate solutions
which have as a maximum temperature the melting point of tungsten and

room temperature at the cold end of the projection.

Numerical Methods

The numerical integration of the heat equation as well as
the temperature-field emission and the Nottingham effects was accom-

4
plished using the methods developed by A. Nordsieck. 5 In this
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method the integration step size is controlled by the integration
routine to assure convergence to a solution as well as to control the
integrated error.

The error sizes were chosen so as to assure at least four
significant figures. 1In this calculation, the resistivity and the
heat conduction were both considered functions of the temperature.

The approximations used were found by the methods presented by
Hastings.46 In particular, the experimental data of Langmuir47 were
fitted to a third order polynomial to achieve a nearly Chebyshev

error of + .2 ohms/cm over the range from SOOOC to the melting tem-
perature of tungsten. Experimental values of the thermal conductivity
are not available over this entire range. Thus recourse had to be
made to the Wiedemann-Franz Ratio48 to approximate the thermal conduc-
tivity. A ratio of two third-order polynomials was chosen to fit the
available data of Langmuir49 and Holliday and Worthington.so The high
temperature values were determined by the requirement that the high
temperature limit ratio approach the theoretical value48 of

ﬂZ k2

3 2

= 2.45X10° % .

The errors in the approximation for the coefficient of heat conduction
when compared to the experimental values were random in nature. The
formulations for the resistivity, O, and thermal conductivity, K, used

in the calculations are:
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3
1033 = -1.8851+23.6572T/ (10 )+3.2696T2/(106)—.2325T3/(109)

K(T) = E%T_)

where L(T) =

3 2 3 9

3.92108-2.16520T/(10 )-1.79225T /(106)+2.45T /(10 %XIO
3

1.17466—.18169T/(103) = 1.15563T2/(106)+T /(109)

Finally, the complete elliptical integrals were evaluated
46
using Hastings' formulation which gives about six decimal places of

accuracy.

Results of the Calculation

The results of the calculations of the temperature distribu-
tions are summarized in Figures 7 and 8., 1In Figure 7 is shown the
critical field as a function of the length and cone angle. The criti-
cal field is the field for which some portion of the projection will
be near the melting point. Notice that the actual length of the whisker
does not become important until the cone angle becomes very small. For
conical projections the important parameter is the emitting area.

In Figure 8 we present the temperature distributions along
one micron length projections of various cone angles. Notice that at
small cone angles the distribution is approximately parabolic as is
the case for cylindrical projections. However, as the cone angle is

2
increased, the distribution becomes a nearly 1/r  law,
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It is interesting to note that the average breakdown field
gives a critical length for a cylinder of roughly 2 microns, a length
which is consistent with our experimental findings and with those of
Little and Whitney.14 From the conical results we note that if break-
down proceeds via the proposed mechanism, it must be associated with

projections of small cone angle.

Concluding Discussion

The results of the calculations clearly indicate the plausi-
bility of the theory that breakdown occurs at or near the field
necessary to bring the temperature of the projection to the melting
point of tungsten. The curves also indicate the reason for describing
electrical breakdown as a field phenomenon. Since the experimental
error of the observations, i1X107 v/cm, encompasses nearly two orders
of magnitude of critical length in the cylindrical case, then minor
variations in emitter geometry would require only insignificant
changes in the field to achieve breakdown.

This fantastic variation of the critical length with elec-
tric field is a direct consequence of the equally fantastic variation
of current with field. In Figure 9 we plot current density versus
electric field for three different work functions. It can be seen
that for all substances, an increase of field at one order of magni-
tude from 107 to 108 volts/cm gives rise to as much as 20 orders of

magnitude increase in current density. It is therefore not surprising
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to expect something violent to occur when one runs into this brick
wall of field emission.

We suggest that electrical breakdown in vacuum is a process
in which a projection on the cathode surface is heated until the
electrode becomes mechanically unstable and the weakened material is
drawn into the electrode gap under the influence of the strong elec-
tric fields. 1In this circumstance the field emission current will be
further enhanced since the field will be rapidly increasing due to
the changing geometry. The enhanced current then allows for more
heating of the material leading to further current buildup. The field
emission process then presents a self-consistent picture of electrical
breakdown in which no recourse is made to the use of adjustable

parameters to fit experiment to theory.
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